手机浏览器扫描二维码访问
第312章历景铄的神经网络模型进展
有了燧火这么一个趁手的算法工程工具,历景铄的神经网络算法研发进度可谓突飞猛进。
两个月前,经过多次尝试,他成功复现了当下学界比较流行的感知机神经网络训练结果,在手写数字识别任务上,已经达到了百分之七十的正确率。
这一成果在国内研究环境中,已然十分亮眼,但历景铄的目光并未就此满足,他深知前路漫漫,还有更多的未知等待探索,于是赶忙找到秦奕开始认真商量下一步的探索方向。
神经网络算法模型的研发有三大关键要素:数据、模型和优化算法。
在神经网络体系中,数据是极为重要的基础部分,数据的质量优劣、规模大小以及多样性程度,对模型的学习能力与泛化能力有着全面且关键的影响。
当数据足够多样时,模型便不会局限于学习某一类特定的数字特征,而是可以提炼出更具通用性、更普遍适用的特征模式,从而在面对从未见过的新数字样本时,也能准确识别。
但要是数据存在偏差,比如手写数字识别任务里的数据某些数字样本数量过多,而另一些过少,模型在学习时就会过度倾向于数量多的数字特征,使得对其他数字的识别能力大幅下降,严重损害泛化性能。
历景铄为了方便对比漂亮国学术界的研究成果,一开始没有去耗费大量精力构建自己独有的数据集,用的是漂亮国现成的数据集——漂亮国国家标准与技术研究院的公开NIST手写数字数据集。
这个数据集是前世被广泛应用于学术研究和工业实践中的手写数字识别领域基准测试数据集MNIST的前身,每个样本都是28×28像素的灰度图像,代表0-9之间的一个数字。
不过MNIST数据集包含六万个训练样本和一万个测试样本,而目前NIST数据集目前只有两万个训练样本和五千个测试样本。
随后,话题转到模型架构上,这是历景铄目前希望改进的重点。
他拿起一支笔,在纸上简单画了个神经网络结构草图,说道:“模型架构是神经网络的核心,具体分为网络结构和参数两大部分。”
“网络结构说白了,就是神经网络怎么组织,有几层,每层是什么类型,连接方式如何,信息又是怎么在各层之间流动,这是神经网络的‘骨架’,决定了网络的功能和适用场景。”
“网络参数呢,就是神经网络里要学习的权重和偏置,决定了网络怎么从输入数据里提取特征、做出预测。”
“现在学术界流行的多层感知机神经网络,是一种前馈神经网络,结构有输入层、隐藏层和输出层,神经元基本都是全连接。”
“我用的也是相同的结构,在处理28×28像素图像的时候,得把图像数据所有像素先展平成一维784长的向量数据,然后从输入层一层一层传到输出层,每层通过权重矩阵和激活函数做非线性映射。”
秦奕凭借前世的经验直接指出了当下多层感知机神经网络的缺点所在:“我觉得这个多层感知机这个神经网络目前至少有两个方面可以改进。”
“首先,它的每个神经元都得和上一层的所有神经元相连,这会导致整个神经网络的参数数量是网络层数的784倍,这么庞大的参数数量,会导致训练过程特别缓慢,还特别容易引发过拟合问题。”
“其次,因为它需要将所有像素展开成一维数据,这样会将原本图像数据中的笔画或者边缘这种特征丢失。”
历景铄听着,眼睛渐渐亮了起来,若有所思地说:“你是觉得我们可以适当减少不同层之间的网络连接,同时把保留输入数据的二维结构,接着在隐藏层里面针对二维矩阵进行学习?”
他突然一拍大腿,兴奋地说:“有了!我之前看到过瀛国科学家福岛邦彦的一篇论文,他好像就有差不多的思路!”说着,他快步走到那堆论文文件夹前,手忙脚乱地翻找起来,嘴里还嘟囔着:“在哪呢,到底放哪了……”
找了好一会儿,终于翻出一篇题为?Neocognitron?的论文,他连忙拿到秦奕面前,说:“秦哥,你看这篇名叫新认知机的论文,里面提出了局部感受野和层次化特征提取的思想。”
“他的网络结构包含S层和C层,S层也就是简单细胞层用卷积操作提取局部的二维空间特征,C层复杂细胞层则整合S层中一组简单细胞的输出,提取更高级的特征,这能在一定程度上减少网络里的参数。”
他赶紧去自己那一堆论文文件夹里面翻找了一番,然后拿出了一篇题为?Neocognitron?的论文给秦奕看:“这篇名叫新认知机的论文里面就提出了局部感受野和层次化特征提取的思想。”
这章没有结束,请点击下一页继续阅读!
“他的网络结构包含S层和C层,其中S层也就是简单细胞层用卷积操作提取局部的二维空间特征,而C层的复杂细胞层,整合S层中一组简单细胞的输出,提取更高级的特征,这一定程度上能减少网络里面的参数。”
秦奕接过这篇远没有杨立昆89年发表的卷积神经网络出名的论文,快速略读了一遍。
读完后,他发现里面的网络结构设计确实是跟后来引入了卷积层和池化层的卷积神经网络基本一致,只是因为这篇论文用的是无监督学习所以难以处理复杂的分类任务。
无监督学习和有监督学习是机器学习的两种主要范式,有监督学习使用标注过的数据即输入数据和对应的输出标签来训练模型,模型的目标是学习输入与输出之间的映射关系,无监督学习使用未标注数据来训练模型,模型的目标是发现数据中的潜在结构或模式。
秦奕点了点头说道:“我觉得这确实是一个很好的网络结构设计思路,我们可以把有监督学习和他这个网络结合起来,说不定就能在手写数字识别任务上取得突破。”
“另外,神经网络虽说是借鉴生物结构,但网络层命名也没必要弄得这么像生物术语,简单细胞和复杂细胞听起来都不知道是做什么的,我建议直接用操作命名就行,做卷积操作的叫卷积层,做池化操作的叫池化层,这样交流起来方便。”
“可以。”历景铄应道,“另外优化算法方面我们这边也遇到了一些问题。”
喜欢科技革命,从1984开始请大家收藏:()科技革命,从1984开始
不是宿敌吗,我死了你疯什么 和女神同居后,我激活了奖励系统 你惹她干嘛?她一张符纸取你狗命 相亲后,我被阿姨和御姐盯上了 宝可梦:真实的理想 远古丛林生活小记 白天娱乐圈搬砖,晚上搞玄学在线接单 穿越:抢了皇位后,我带大明起飞 干婚 逃不掉,娇气宝宝又被主神抓走了 救世主再就业の排球行 都市老光棍,异界一袋粮食换老婆 一穿就成了军中御姐 冰山学姐不谈恋爱,唯对我开特权 重生魔修,开局捡到一颗丧尸星球 直播:要天后微信,砍一刀拼夕夕 我的悲惨前生与重生 八零小炮灰,撩爆男主要上位 云雷逐梦 富豪大农民
关于足坛之开局点满任意球什么?竟然把任意球点满了,我明明点的是传球呀!!!沦为皇马队饮水机管理员的江浩,在一场国家德比最后时刻登场,以两粒直接任意球破门方式开始传奇人生。弗洛伦蒂诺我这辈子最大的错误,便是把江浩卖给巴伦西亚。齐达内我很幸运,江浩没有出生在我们那个年代。C罗江浩是历史最佳,我不如他。贝尔难以想象,我竟然会在速度上被人碾压。拉莫斯这家伙不是惧怕对抗吗,怎么铲不动?梅西...
林风穿越到了一个诡异的世界,成了凌虚观的一名小道士。但这世界原本的规则早已破碎,破碎的仙道流落到各种生物手中,滋生出无数邪仙异教。林风在机缘巧合下,被疯子师父血肉附体,还换上了一颗恶鬼的心脏,变成一个半人半鬼的怪物。红月,血雨,尸林倒挂,白蜡油翻滚中人祭,万人朝拜的黄金树,连绵不断的尸垛,不死癫狂的难民,佛世净土中...
关于林家有女整治家风种田宅斗大女主无金手指无cp脾气暴躁一言不合就咬人村中有四霸恶狗公羊大鹅和林三丫林瑶睁开眼就目睹了家徒四壁,那叫一个寒酸。再睁眼又目睹了泼妇骂街,得不想动嘴打一顿就好了。从此林家三丫性情大变一言不合就开撕。重男轻女的偏心祖母,心思深沉祖父,独木难支的后娘,软弱无能的亲爹。上有两个任人欺辱的姐姐,下有两个后娘生的弟妹,更有恶毒叔伯一窝好吃懒做筛子精,真真是极品凑了一堆。从此...
关于诸天带着随身空间到了四合院世界陈琦莫名穿越,来到一片湖心岛,发现拥有空间之后,并感应到世界种子,按其要求吸收物质供给小世界之种,然后就被排斥到四合院世界,开局城门口,因为衣服新颖而被误认为富家公子而被放行,进入城内遇到还在卖包子的未成年何雨柱,阻止了他被人骗,改变了他获得外号的命运,从而改变了主角的命运从其身上获得了气运,得到了一定的庇护避免了被四合院世界排斥而赶出世界。之后陈琦靠着何雨柱的帮助进入了四合院租了院子安定下来,靠着小世界的养殖种植能力,通过何大清介绍给丰泽园供应食材,之后开肉铺,接手杂货铺,开商行,买地,生意越做越大,于是很多事情很多人也纷至沓来,蝴蝶效应直接造成何大清成了丰泽园二厨,并再娶了。而陈琦只想收集这个世界的各种动植物然后去诸天寻找永生。持续的获取气运使得小世界内开始出现了生成中的四合院世界的信标传送门,完成之后就可以在离开这个世界之后就可以随时回到四合院世界。现在开启了荒野大镖客2救赎的第一幕第一个世界,四合院,第1章124章第二世界,荒野西部大镖客2125章第三世界,港综第四个世界待定。...
关于万里追狼白龙,它不是龙,也不是马,它是一条白色的狗,是60年代华北地区某村的一条狗王。在那个狼灾泛滥的时代,白龙在主人福哥的照料下,历经坎坷,从一条小狗崽成长为一条勇猛的狗王,并和村里的狗一起担负起守卫村庄的责任。由此与村庄周围的狼群结仇,几番恶战,斗智斗勇。。。...
关于异能学校之遇上恋爱脑大佬选修课总是遇到女主被迫恋爱脑的魔修大佬vs表面小白实则腹黑爱玩的欧皇新生!简介一高考后准备报考的褚星禾,某天突然接到电话请问是褚星禾同学吗?这里是关山岭职业技术专修学院考生你好,这里是玄天宗职业技法大学招生办褚同学你好,这里是魔神机械设计学院招生办这不妥妥的诈骗电话吗?什么妖魔鬼怪的野鸡学校都打电话过来招生。听听这名字,褚星禾能信吗?当然不能!!!然而她还是被迫入学了。没人告诉她还有入学考试,怎么还有人上学带刀枪剑炮水晶球啊?这都算了!为什么入学考试是闯鬼屋?躲丧尸?跳大神越来越离谱了,得亏褚星禾从小见惯妖魔鬼怪,不然真得被创飞。简介二通识实践课就跟着魔修大佬一起选!结课巨快!为什么?他每个副本都得杀妻证道,主打就是一个大道无情!你进去老公还没喊出来,人就噶掉了!嘎嘎快。还有这种好事?褚星禾第一个冲了!然而她遇到的怎么不太一样?谁能来告诉她,为什么这个魔修大佬只会哭唧唧找老婆,甩都甩不开?...